Phytochemistry, 1973, Vol. 12, pp. 731 to 732. Pergamon Press. Printed in England.

4,8,13-DUVATRIENE-1-OL-3-ONE AND 11-ISOPROPYL-4,8-DIMETHYL-3,7,12-PENTADECATRIENE-2,14-DIONE ISOMERS FROM NICOTIANA TABACUM

A. ZANE

United States Tobacco Co., PO Box 29, Nashville, Tennessee, TN 37202, U.S.A.

(Received 6 October 1972. Accepted 16 November 1972)

Key Word Index—*Nicotiana tabacum*; Solanaceae; dark-fired fermented tobacco; terpenoid diketones; 4,8,13-duvatriene-1-ol-3-one; 11-isopropyl-4,8-dimethyl-3,7,12-pentadecatriene-2,14-dione.

Plant. Nicotiana tabacum. Source. Grown commercially in north-western Tennessee, and smoke-cured in barns. Uses. Mostly for snuff manufacture. Previous work. None on diterpenes or dark-fired tobacco. A number of diterpenoids have been isolated, however, from other tobaccos.^{1,2}

Present work. The present report describes the isolation, for the first time from a natural source, of three compounds which were produced in the tobacco leaf during a natural fermentation process. These compounds are, 4,8,13-duvatriene-1-ol-3-one (I), the diketone, 11-isopropyl-4,8-dimethyl-3,7,12-pentadecatriene-2,14-dione (II). The latter was obtained in two stereo forms, as isomers-A and -B. Compounds I and II constituted 0.08 and 0.02% respectively by weight of dry tobacco. It is conceivable that these products are formed by enzymatic action on the α - and β -4,8,13-duvatriene-1,3-diols which are known to be present in the tobacco leaf. These diols have been previously reported to be present in burley, flue-cured and Turkish tobaccos.¹

Compound I was a yellow oil, $C_{20}H_{32}O_2$ (M⁺304). UV: λ_{max}^{EIOH} 243 nm (ϵ 9300). IR ν_{max} (NaCl disc): 3440, 1676, 1613, 1440, 1386, 1368, 1290 1210, 978, 935 cm⁻¹. NMR (60 MHz, CDCl₃): τ 9·14 (q, 6H), 8·63 (s, 3H), 8·42 (s, 3H), 7·91 (d, 3H, J 1·4 Hz), 5·04 (s, 1H), 4·55 (t, 2H), 3·94 (s, 1H). The structure of I was established by the preparation of authentic α - and β -4,8,13-duvatriene-1-ol-3-ones. Since a mixture of the synthetic diesastero-isomers were not separable on the GLC or the chromatographic columns tried, (I) could be an unresolvable mixture of the α - and β -forms.

Compound II consisted of isomers-A and -B in the proportion of 1-4. Isomer B was a yellow oil, $C_{20}H_{32}O_2$ (M⁺ 304). UV λ_{max}^{E1OH} 229 nm (ϵ 21 800). IR ν_{max} (NaCl disc): 1688,

¹ D. L. ROBERTS and R. L. ROWLAND, J. Org. Chem. 27, 3989 (1962); 28, 1165 (1963); 29, 16 (1964).

² A. J. AASEN, B. KIMLAND, S. O. ALMQVIST and C. R. ENZELL, Acta Chem. Scand. 26, 832 (1972).

1676, 1620, 1386, 1360, 1252, 1212, 1168, 983 cm⁻¹. NMR (60 MHz, CDCl₃): τ 9·12 (q, 6H), 8·41 (s, 3H), 7·87 (d, 3H J 1·0 Hz), 7·84 (s, 3H), 7·75 (s, 3H), 3·1–5·0 (4H). The physical data compares closely with those published for the synthetic material. Isomer-A was a yellow oil. (Found: C, 78·52; H, 10·50. $C_{20}H_{32}O_{2}$ requires: C, 78·89; H, 10·59%.) UV $\lambda_{\text{max}}^{\text{EtOH}}$ 229 nm (ϵ 17 700). IR ν_{max} (NaCl disc). 1686, 1672, 1615, 1384, 1356, 1252, 1168, 982 cm⁻¹. NMR (60 MHz, CDCl₃): τ 9·10 (q, 6H), 8·38 (s, 3H), 8·13 (d, 3H J 1·5 Hz), 7·85 (s, 3H), 7·75 (s, 3H), 3·1–5·0 (4H).

Stereochemistry of isomers-A and -B. The 7,8-double bonds in both isomers are assigned the trans configuration, that is, by applying Bates' observations to the NMR data.³ The disubstituted 12,13-double bond is also of trans form.¹ The location of the peak for the methyl group at τ 7.87 in the isomer-B and at τ 8.13 in the isomer-A suggests that the 3,4-double bond is cis in isomer-A and trans in isomer-B. Analogy is drawn from chemical-shift data for cis-trans pairs of unsaturated esters where the deshielding of the protons of a cis methyl group by an alkoxy-carbonyl group is fairly constant, being of the order of 0.25 Hz.⁴

EXPERIMENTAL

Dark-fired and aged tobacco (U.S. Department of Agriculture Types 22 and 23) were wetted with H_2O to produce a 40–43% moisture content. The leaves were ground to a 6-mm size and stored at 23–25° in thin, opaque polyethylene bags. Once a week the bags were uncovered for about 5 min aeration. The progress of the fermentation was followed by GLC (OV-101) by sampling the tobacco at 8-day intervals. After 50 days the tobacco was air-dried, ground and extracted with cold hexane. The extract was chromatographed on silicic acid columns. The desired materials were found in the 10% Et₂O-C₆H₆ fractions. Compound II, which preceded I off the column, was further purified and separated into two stereo forms (A and B) on a florisil column using 50% Et₂O-C₆H₆.

Isomerization of isomers-A and -B. Distillation of isomer-B at 170° 0.2 mm Hg pressure produced about equal amounts of isomer-B and isomer-A. Similarly, the distillation of isomer-A produced about equal amounts of the two isomers. MS of A and B were identical.

Acknowledgement—The author is grateful to Drs. D. L. Roberts and W. M. Henley of R. J. Reynolds Industries for a gift of α - and β -4,18,13-duvatriene-1,3-diols.

- ³ R. B. Bates and D. M. Gale, J. Am. Chem. Soc. 82, 5749 (1960).
- ⁴ L. M. JACKMAN and R. H. WILEY, J. Chem. Soc. 2886 (1960).

Phytochemistry, 1973, Vol. 12, pp. 732 to 733. Pergamon Press. Printed in England.

SIMIARENONE FROM TREMA ORIENTALIS*

L. OGUNKOYA, O. O. OLUBAJO and D. S. SONDHA Department of Chemistry, University of Ife, Ile-Ife, Nigeria

(Received 23 October 1972. Accepted 8 November 1972)

Key Word Index-Trema orientalis; Ulmaceae; triterpene; simiarenone.

Repeated chromatographic fractionation on alumina of the neutral fraction of the light petrol. extract of the stem-bark of Trema orientalis gave a crystalline ketone (0.04% based

* L. OGUNKOYA, O. O. OLUBAJO and D. S. SONDHA, Phytochem. 11, 2361 (1972).